
Hybrid Parallel Programming with MPI
and Unified Parallel C

James Dinan, Pavan Balaji, Ewing Lusk, P. Sadayappan, Rajeev Thakur

© 2010, Argonne National Laboratory

Experimental Evaluation: Barnes-Hut N-Body Simulation

Overview Hybrid Programming Model

Advantages of Hybridization

Hybrid MPI+UPC Process
UPC Process

Flat Nested-Funneled Nested-Multiple

Flat: One UPC global address space, all processes can communicate with
all other processes using MPI and UPC.

Nested-Funneled: Multiple UPC distributed shared global address spaces
connected by MPI. UPC communication is limited to within UPC groups and
MPI communication can only be performed by the group masters.

Nested-Multiple: Multiple UPC distributed shared global address spaces
connected by MPI. UPC communication is limited to within UPC groups and
all processes can communicate via MPI.

The Message Passing Interface (MPI) is one of the most widely used
programming models for parallel computing. However, the amount of
memory available to an MPI process is limited by the amount of local
memory within a compute node. Partitioned Global Address Space (PGAS)
models such as Unified Parallel C (UPC) are growing in popularity because
of their ability to provide a shared global address space that spans the
memories of multiple compute nodes. However, taking advantage of UPC
can require a large recoding effort for existing parallel applications.

In this poster, we describe a new hybrid parallel programming model that
combines MPI and UPC. This model allows MPI programmers incremental
access to a greater amount of memory, enabling memory-constrained MPI
codes to process larger data sets. In addition, the hybrid model offers UPC
programmers increased locality control through the creation of static UPC
groups that are connected over MPI. As we demonstrate, these groups can
significantly improve the scalability of locality-constrained UPC codes.

for i in 1..t_max

 t <- new octree()

 forall b in bodies

 insert(t, b)

 summarize_subtrees(t)

 forall b in bodies

 compute_forces(b, t)

 forall b in bodies

 advance(b)

for i in 1..t_max

 t <- new octree()

 forall b in bodies

 insert(t, b)

 summarize_subtrees(t)

 our_bodies <-

 partion(group id, bodies)

 forall b in our_bodies

 compute_forces(b, t)

 forall b in our_bodies

 advance(b)

 Allgather(our_bodies, bodies)

Nested-Funneled
Hybrid UPC+MPI

UPC Only
(baseline)

In the nested-funneled implementation, the tree is replicated on every UPC
group. New code (highlighted) must be added to distribute work and collect
results. In total, of 51 new lines of code (2% increase) were added.

•  Simulate motion of n bodies over T time
steps. At each step, calculate the
gravitational interaction of each body with all
others to find the net force.

•  Approximate the interaction between distant
bodies as an interaction with the center of
mass of whole region.

•  Represents sparse volume of 3-dimensional
space using a large shared oct-tree (hard to
do with MPI, easy to do with UPC).

Colliding Antennae Galaxies
(Courtesy Hubble Telescope)

Performance Locality

•  At 256 processors, baseline UPC speedup is roughly 55x and Hybrid-16
(four quad-core nodes) speedup is 100x.

•  The locality plot shows that for the UPC only case, locality diminishes
rapidly as the number of processors is increased because the tree is
distributed across a larger global address space (more nodes).

•  This shows how hybridization provides additional locality control, allowing
us to reduce the performance penalty from remote data references.

Conclusions
The hybrid MPI+UPC programming model offers an incremental pathway that
allows existing applications to take advantage of MPI’s locality control and
UPC’s global address space. For memory constrained MPI codes, the hybrid
model enables computation on larger problems by aggregating the memory of
several nodes into a single, shared global address space. For locality-
constrained UPC codes, the hybrid model can improve locality through the
creation of UPC groups that are connected with MPI.

We have presented an evaluation of this new model on the Barnes-Hut n-body
simulation. Compared against a baseline execution on 256 cores, we found
that, for groups that span four cluster nodes, the hybrid Barnes-Hut application
experiences almost a twofold speedup at the expense of a 2% increase in
code size.

For more information, see:

“Hybrid Parallel Programming with MPI and Unified Parallel C.” James
Dinan, Pavan Balaji, Ewing Lusk, P. Sadayappan, Rajeev Thakur. Proc. 7th
ACM Conf. on Computing Frontiers (CF). Bertinoro, Italy. May 17-19, 2010.

Or contact: James Dinan <dinan@mcs.anl.gov>

•  Software setup:
•  GCCUPC compiler; Berkeley UPC runtime 2.8.0, IBV conduit with SSH

bootstrap (default is MPI); MVAPICH with Hydra process manager
•  Hardware setup:

•  Glenn cluster at OSC: 877 Nodes, two dual-core 2.6 GHz AMD
Opterons, 8GB RAM per node, and Infiniband interconnect

1.  Extend MPI codes with access to more memory:
The memory available to an MPI process is limited by the amount of
memory in a single node. UPC is able to aggregate the memory of
multiple nodes into a single global address space providing access to a
greater amount of shared memory.

2.  Improve performance for locality-constrained UPC codes:
Some UPC codes lose performance as the number of nodes is increased
due to diminishing locality. Hybridization with MPI provides additional
locality control and allows the programmer to create static UPC groups
that span multiple nodes.

3.  Provide MPI users with an asynchronous global address space:
 MPI-2 provides one-sided messaging primitives, but they are not quite as
flexible as a global address space. MPI targets extreme portability, so it
cannot assume that the underlying memory subsystem is coherent.
Unfortunately, this results in restrictions on MPI’s one-sided semantics
includng limitations on local access to shared data, synchronization, and
access patterns. UPC harnesses system support to provide a more
flexible, convenient, and asynchronous global address space.

4.  Interoperability with libraries like PETSc and SCALAPACK.

Launching Hybrid Applications
Much of the work in hybrid MPI+UPC programming is done by the process
manager that launches the application. We’ve modified Hydra, MPICH2’s
process manager, to provide additional functionality that allows UPC groups
to request more than one MPI rank (--ranks-per-proc=N).

Flat: SPMD launch with one MPI task (upcrun) that requests N MPI ranks.
 $ mpiexec --ranks-per-proc=N upcrun -n N myapp!

Nested-Funneled: MPMD launch with one task per UPC group
 $ mpiexec -env HOSTS=hosts.1 upcrun -n N myapp \!
 : -env HOSTS=hosts.2 upcrun -n N myapp : ...!

Nested-Multiple: MPMD launch, each UPC group requests N MPI ranks.
 $ mpiexec \!
 --ranks-per-proc=N -env HOSTS=hosts.1 upcrun -n N myapp \!
 : --ranks-per-proc=N -env HOSTS=hosts.2 upcrun -n N myapp \!
 : ...

